\(\int \frac {1}{(a+b \arcsin (c x))^{5/2}} \, dx\) [200]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [F(-2)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 12, antiderivative size = 163 \[ \int \frac {1}{(a+b \arcsin (c x))^{5/2}} \, dx=-\frac {2 \sqrt {1-c^2 x^2}}{3 b c (a+b \arcsin (c x))^{3/2}}+\frac {4 x}{3 b^2 \sqrt {a+b \arcsin (c x)}}-\frac {4 \sqrt {2 \pi } \cos \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{3 b^{5/2} c}-\frac {4 \sqrt {2 \pi } \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{3 b^{5/2} c} \]

[Out]

-4/3*cos(a/b)*FresnelC(2^(1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/b^(5/2)/c-4/3*Fresne
lS(2^(1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))*sin(a/b)*2^(1/2)*Pi^(1/2)/b^(5/2)/c-2/3*(-c^2*x^2+1)^(1/2
)/b/c/(a+b*arcsin(c*x))^(3/2)+4/3*x/b^2/(a+b*arcsin(c*x))^(1/2)

Rubi [A] (verified)

Time = 0.17 (sec) , antiderivative size = 163, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.667, Rules used = {4717, 4807, 4719, 3387, 3386, 3432, 3385, 3433} \[ \int \frac {1}{(a+b \arcsin (c x))^{5/2}} \, dx=-\frac {4 \sqrt {2 \pi } \cos \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{3 b^{5/2} c}-\frac {4 \sqrt {2 \pi } \sin \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{3 b^{5/2} c}+\frac {4 x}{3 b^2 \sqrt {a+b \arcsin (c x)}}-\frac {2 \sqrt {1-c^2 x^2}}{3 b c (a+b \arcsin (c x))^{3/2}} \]

[In]

Int[(a + b*ArcSin[c*x])^(-5/2),x]

[Out]

(-2*Sqrt[1 - c^2*x^2])/(3*b*c*(a + b*ArcSin[c*x])^(3/2)) + (4*x)/(3*b^2*Sqrt[a + b*ArcSin[c*x]]) - (4*Sqrt[2*P
i]*Cos[a/b]*FresnelC[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqrt[b]])/(3*b^(5/2)*c) - (4*Sqrt[2*Pi]*FresnelS[(Sq
rt[2/Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqrt[b]]*Sin[a/b])/(3*b^(5/2)*c)

Rule 3385

Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Cos[f*(x^2/d)],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3386

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[f*(x^2/d)], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3387

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) +
f*x]/Sqrt[c + d*x], x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c
, d, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]

Rule 3432

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelS[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 3433

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelC[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 4717

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Sqrt[1 - c^2*x^2]*((a + b*ArcSin[c*x])^(n + 1)/
(b*c*(n + 1))), x] + Dist[c/(b*(n + 1)), Int[x*((a + b*ArcSin[c*x])^(n + 1)/Sqrt[1 - c^2*x^2]), x], x] /; Free
Q[{a, b, c}, x] && LtQ[n, -1]

Rule 4719

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[1/(b*c), Subst[Int[x^n*Cos[-a/b + x/b], x], x,
a + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, n}, x]

Rule 4807

Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[
((f*x)^m/(b*c*(n + 1)))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSin[c*x])^(n + 1), x] - Dist[f*(m/(b
*c*(n + 1)))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]], Int[(f*x)^(m - 1)*(a + b*ArcSin[c*x])^(n + 1), x], x] /;
 FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && LtQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 \sqrt {1-c^2 x^2}}{3 b c (a+b \arcsin (c x))^{3/2}}-\frac {(2 c) \int \frac {x}{\sqrt {1-c^2 x^2} (a+b \arcsin (c x))^{3/2}} \, dx}{3 b} \\ & = -\frac {2 \sqrt {1-c^2 x^2}}{3 b c (a+b \arcsin (c x))^{3/2}}+\frac {4 x}{3 b^2 \sqrt {a+b \arcsin (c x)}}-\frac {4 \int \frac {1}{\sqrt {a+b \arcsin (c x)}} \, dx}{3 b^2} \\ & = -\frac {2 \sqrt {1-c^2 x^2}}{3 b c (a+b \arcsin (c x))^{3/2}}+\frac {4 x}{3 b^2 \sqrt {a+b \arcsin (c x)}}-\frac {4 \text {Subst}\left (\int \frac {\cos \left (\frac {a}{b}-\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \arcsin (c x)\right )}{3 b^3 c} \\ & = -\frac {2 \sqrt {1-c^2 x^2}}{3 b c (a+b \arcsin (c x))^{3/2}}+\frac {4 x}{3 b^2 \sqrt {a+b \arcsin (c x)}}-\frac {\left (4 \cos \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \arcsin (c x)\right )}{3 b^3 c}-\frac {\left (4 \sin \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \arcsin (c x)\right )}{3 b^3 c} \\ & = -\frac {2 \sqrt {1-c^2 x^2}}{3 b c (a+b \arcsin (c x))^{3/2}}+\frac {4 x}{3 b^2 \sqrt {a+b \arcsin (c x)}}-\frac {\left (8 \cos \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \cos \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \arcsin (c x)}\right )}{3 b^3 c}-\frac {\left (8 \sin \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \sin \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \arcsin (c x)}\right )}{3 b^3 c} \\ & = -\frac {2 \sqrt {1-c^2 x^2}}{3 b c (a+b \arcsin (c x))^{3/2}}+\frac {4 x}{3 b^2 \sqrt {a+b \arcsin (c x)}}-\frac {4 \sqrt {2 \pi } \cos \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{3 b^{5/2} c}-\frac {4 \sqrt {2 \pi } \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{3 b^{5/2} c} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.67 (sec) , antiderivative size = 214, normalized size of antiderivative = 1.31 \[ \int \frac {1}{(a+b \arcsin (c x))^{5/2}} \, dx=\frac {e^{-\frac {i (a+b \arcsin (c x))}{b}} \left (-2 b e^{i \arcsin (c x)} \left (-\frac {i (a+b \arcsin (c x))}{b}\right )^{3/2} \Gamma \left (\frac {1}{2},-\frac {i (a+b \arcsin (c x))}{b}\right )-i e^{\frac {i a}{b}} \left (2 a \left (-1+e^{2 i \arcsin (c x)}\right )+b \left (-i-2 \arcsin (c x)+e^{2 i \arcsin (c x)} (-i+2 \arcsin (c x))\right )-2 i b e^{\frac {i (a+b \arcsin (c x))}{b}} \left (\frac {i (a+b \arcsin (c x))}{b}\right )^{3/2} \Gamma \left (\frac {1}{2},\frac {i (a+b \arcsin (c x))}{b}\right )\right )\right )}{3 b^2 c (a+b \arcsin (c x))^{3/2}} \]

[In]

Integrate[(a + b*ArcSin[c*x])^(-5/2),x]

[Out]

(-2*b*E^(I*ArcSin[c*x])*(((-I)*(a + b*ArcSin[c*x]))/b)^(3/2)*Gamma[1/2, ((-I)*(a + b*ArcSin[c*x]))/b] - I*E^((
I*a)/b)*(2*a*(-1 + E^((2*I)*ArcSin[c*x])) + b*(-I - 2*ArcSin[c*x] + E^((2*I)*ArcSin[c*x])*(-I + 2*ArcSin[c*x])
) - (2*I)*b*E^((I*(a + b*ArcSin[c*x]))/b)*((I*(a + b*ArcSin[c*x]))/b)^(3/2)*Gamma[1/2, (I*(a + b*ArcSin[c*x]))
/b]))/(3*b^2*c*E^((I*(a + b*ArcSin[c*x]))/b)*(a + b*ArcSin[c*x])^(3/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(339\) vs. \(2(129)=258\).

Time = 0.06 (sec) , antiderivative size = 340, normalized size of antiderivative = 2.09

method result size
default \(-\frac {2 \left (2 \arcsin \left (c x \right ) \sqrt {a +b \arcsin \left (c x \right )}\, \cos \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) \sqrt {\pi }\, \sqrt {2}\, \sqrt {-\frac {1}{b}}\, b -2 \arcsin \left (c x \right ) \sqrt {a +b \arcsin \left (c x \right )}\, \sin \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) \sqrt {\pi }\, \sqrt {2}\, \sqrt {-\frac {1}{b}}\, b +2 \sqrt {a +b \arcsin \left (c x \right )}\, \cos \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) \sqrt {\pi }\, \sqrt {2}\, \sqrt {-\frac {1}{b}}\, a -2 \sqrt {a +b \arcsin \left (c x \right )}\, \sin \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) \sqrt {\pi }\, \sqrt {2}\, \sqrt {-\frac {1}{b}}\, a +2 \arcsin \left (c x \right ) \sin \left (-\frac {a +b \arcsin \left (c x \right )}{b}+\frac {a}{b}\right ) b +\cos \left (-\frac {a +b \arcsin \left (c x \right )}{b}+\frac {a}{b}\right ) b +2 \sin \left (-\frac {a +b \arcsin \left (c x \right )}{b}+\frac {a}{b}\right ) a \right )}{3 c \,b^{2} \left (a +b \arcsin \left (c x \right )\right )^{\frac {3}{2}}}\) \(340\)

[In]

int(1/(a+b*arcsin(c*x))^(5/2),x,method=_RETURNVERBOSE)

[Out]

-2/3/c/b^2*(2*arcsin(c*x)*(a+b*arcsin(c*x))^(1/2)*cos(a/b)*FresnelC(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(
c*x))^(1/2)/b)*Pi^(1/2)*2^(1/2)*(-1/b)^(1/2)*b-2*arcsin(c*x)*(a+b*arcsin(c*x))^(1/2)*sin(a/b)*FresnelS(2^(1/2)
/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)/b)*Pi^(1/2)*2^(1/2)*(-1/b)^(1/2)*b+2*(a+b*arcsin(c*x))^(1/2)*co
s(a/b)*FresnelC(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)/b)*Pi^(1/2)*2^(1/2)*(-1/b)^(1/2)*a-2*(a+
b*arcsin(c*x))^(1/2)*sin(a/b)*FresnelS(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)/b)*Pi^(1/2)*2^(1/
2)*(-1/b)^(1/2)*a+2*arcsin(c*x)*sin(-(a+b*arcsin(c*x))/b+a/b)*b+cos(-(a+b*arcsin(c*x))/b+a/b)*b+2*sin(-(a+b*ar
csin(c*x))/b+a/b)*a)/(a+b*arcsin(c*x))^(3/2)

Fricas [F(-2)]

Exception generated. \[ \int \frac {1}{(a+b \arcsin (c x))^{5/2}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(1/(a+b*arcsin(c*x))^(5/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

Sympy [F]

\[ \int \frac {1}{(a+b \arcsin (c x))^{5/2}} \, dx=\int \frac {1}{\left (a + b \operatorname {asin}{\left (c x \right )}\right )^{\frac {5}{2}}}\, dx \]

[In]

integrate(1/(a+b*asin(c*x))**(5/2),x)

[Out]

Integral((a + b*asin(c*x))**(-5/2), x)

Maxima [F]

\[ \int \frac {1}{(a+b \arcsin (c x))^{5/2}} \, dx=\int { \frac {1}{{\left (b \arcsin \left (c x\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(1/(a+b*arcsin(c*x))^(5/2),x, algorithm="maxima")

[Out]

integrate((b*arcsin(c*x) + a)^(-5/2), x)

Giac [F]

\[ \int \frac {1}{(a+b \arcsin (c x))^{5/2}} \, dx=\int { \frac {1}{{\left (b \arcsin \left (c x\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(1/(a+b*arcsin(c*x))^(5/2),x, algorithm="giac")

[Out]

integrate((b*arcsin(c*x) + a)^(-5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(a+b \arcsin (c x))^{5/2}} \, dx=\int \frac {1}{{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^{5/2}} \,d x \]

[In]

int(1/(a + b*asin(c*x))^(5/2),x)

[Out]

int(1/(a + b*asin(c*x))^(5/2), x)